Search results for "AMEBA ACANTHAMOEBA-CASTELLANII"

showing 1 items of 1 documents

Coincidental loss of bacterial virulence in multi-enemy microbial communities.

2014

The coincidental virulence evolution hypothesis suggests that outside-host selection, such as predation, parasitism and resource competition can indirectly affect the virulence of environmentally-growing bacterial pathogens. While there are some examples of coincidental environmental selection for virulence, it is also possible that the resource acquisition and enemy defence is selecting against it. To test these ideas we conducted an evolutionary experiment by exposing the opportunistic pathogen bacterium Serratia marcescens to the particle-feeding ciliate Tetrahymena thermophila, the surfacefeeding amoeba Acanthamoeba castellanii, and the lytic bacteriophage Semad11, in all possible combi…

Ecological selectionBacteriophageNatural SelectionBacteriophagesANTAGONISTIC COEVOLUTIONLISTERIA-MONOCYTOGENESSerratia marcescens1183 Plant biology microbiology virologyGeneticsSERRATIA-MARCESCENSAcanthamoeba castellanii0303 health sciencesMultidisciplinaryEcologybiologyQTetrahymenaRAcanthamoeba castellaniiMedicineResearch ArticleEvolutionary ProcessesVirulence FactorsAntagonistic CoevolutionScienceMicrobial ConsortiaeducationVirulenceMicrobiologyMicrobial EcologyMicrobiologyEvolution Molecular03 medical and health sciencesmulti-enemy microbial communitiesWater environment030304 developmental biologySTAPHYLOCOCCUS-AUREUSEvolutionary BiologyPSEUDOMONAS-AERUGINOSA VIRULENCE030306 microbiologybacterial virulenceDICTYOSTELIUM-DISCOIDEUMBiology and Life SciencesBacteriologybiology.organism_classificationOrganismal EvolutionArtificial SelectionTETRAHYMENA-THERMOPHILAEvolutionary EcologyMicrobial Evolutionta1181AMEBA ACANTHAMOEBA-CASTELLANIILEGIONELLA-PNEUMOPHILABacteriaMEDIA COMPOSITION INFLUENCESPLoS ONE
researchProduct